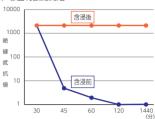

絶縁診断技術


鉄道事業者のお困りごと(絶縁診断による予防保全提供)

【絶縁診断メニュー】(一部抜粋)

①絶縁状態確認(tanδ試験、耐圧試験等) ②吸湿/回復試験 ③浸水/散水試験 ④温度上昇試験 ⑤固有振動測定

吸湿試験

温度上昇試験

固有振動測定

絶縁診断結果 -

主電動機メーカ			A社		B社		C社		D社	
測定項目	内容	管理値	含浸前	含浸後	含浸前	含浸後	含浸前	含浸後	含浸前	含浸後
$ an \delta$	500V	2500V:1~11%以下	0.61	0.62	1.34	0.78	3.71	1.40	3.13	1.42
	1500V	500V-2500V 測定差: 3% 以内	0.62	0.65	1.39	0.86	3.81	1.44	3.25	1.65
	2500V	ループ幅: 1% 以内	0.63	0.65	1.44	0.93	3.88	1.45	3.37	1.75
部分放電	Qmax(pC)	参考値	700	100	200	500	700	5400	10000以上	2400
	CEV (kV)	放電開始電圧: 1.1KV 以上	2.2	2.5	2.0	1.6	1.6	1.3	1.5	1.7
吸湿特性 (MΩ)	30分	- 参考値: 10M Ω以上	2000	2000	2000	2000	1980	2000	2000	2
	35分		2000	2000	2000	2000	1500	2000	2000	2
	40分		2000	2000	2000	2000	1150	2000	2000	2
	45分		2000	2000	2000	2000	5	2000	2000	2
	1 時間		2000	2000	2000	2000	2	2000	2000	2
	2 時間		2000	2000	2000	2000	1	2000	3	2
	8 時間		2000	2000	2000	2000	1	2000	2	2
	24 時間		2000	2000	2000	2000	1	2000	2	2
回復特性 (M Ω)	3分	参考值:10MΩ以上	2000	2000	2000	2000	1	2000	8	2
	5分		2000	2000	2000	2000	1	2000	12	2
	10分		2000	2000	2000	2000	2	2000	50	2
	15分		2000	2000	2000	2000	2.5	2000	160	2
	30分		2000	2000	2000	2000	15	2000	700	2
	45分		2000	2000	2000	2000	22	2000	1460	2
	1 時間		2000	2000	2000	2000	60	2000	2000	2
	1 時間 10 分		2000	2000	2000	2000	230	2000	2000	2
	1 時間 30 分		2000	2000	2000	2000	2000	2000	2000	2
散水特性	散水前	44 47 7 470	2000	2000	2000	2000	2000	2000	2000	2
(M Ω)	散水中	参考試験	2000	2000	2000	2000	3	2000	1	2
浸水特性	浸水前	参考試験	2000	2000	2000	2000	2000	2000	2000	2
(M Ω)	浸水中		2000	2000	30	2000	2	2000	2	2
Ih 温度上昇	固定子巻線	180K	97	93.5	114	100.5	100.5	101.5	116	112
	固定子枠	_	56	56	75	67	62	64	68	71
	軸受 (P)	55K	17	31	23	30	19	30	19	30
	軸受 (C)	55K	10	14	13	10	9	14	12	17
有振動測定	(Hz)	1000Hz以上	1331	1428	1503	1669	1712	1975	1319	1919

故障傾向とその対処事例 -

①熱的劣化:定常運転、間欠運転、冷却不具合

→劣化現象: 化学反応による材質変質、絶縁層構成変化

②電圧的劣化: 運転電圧、サージ電圧

→劣化現象: 部分放電による絶縁層侵食、トラッキング発生、トリーイング発生、

繰り返しサージによる絶縁侵食(素線絶縁のレヤーショート)

③機械的劣化: ヒートサイクル、電磁振動、機械的振動

→劣化現象: コイル端部損傷(亀裂、剥離発生)、絶縁層摩耗

④環境的劣化:ダスト、汚損、吸湿、結露、化学物質(薬品、油等)、導電性物質(塩分等)

→劣化現象: 絶縁性能低下、絶縁層摩耗、絶縁層侵食、絶縁層膨潤、トラッキング発生

故障調査、絶縁診断を経て、電動機ライフサイクル(いつまでお使いになるか)を踏まえた コストミニマム、最適な修繕方法を提供(中修「再含浸工事」、大修「コイル巻替」等)

修繕実績

DC 中修工事195台 / 大修工事237台 (2019年度) AC 中修工事726台 / 大修工事 62台 (2019年度)

東日本旅客鉄道 東海旅客鉄道 西日本旅客鉄道 四国旅客鉄道 西武鉄道 阪急電鉄 名古屋鉄道 九州旅客鉄道

西日本鉄道 名古屋市交通局 など

(再含浸工事)

大修(コイル巻替工事)

様々なメーカー、形式の電動機のデータを横並びしながら、相対的な絶縁診断を実施